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The 1/ f� noise displayed by the fluctuation of the nth unfolded eigenvalue, where n plays the role of a
discrete time, was recently characterized for the classical Gaussian ensembles of N�N random matrices. It is
investigated here for the �-Hermite ensemble by wavelet analysis of Monte Carlo simulated series both as a
function of � and of N. When � decreases from 1 to 0, for a given and large enough N, the evolution from a
1/ f noise at �=1 Gaussian orthogonal ensemble �GOE� to a 1/ f2 noise at �=0 Gaussian diagonal ensemble
�GDE� is heterogeneous with a �1/ f2 noise at the finest scales and a �1/ f noise at the coarsest ones.
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Random matrix theory �RMT� contributes significantly to
quantum chaology which pertains to the statitical properties
of quantum systems whose classical counterparts are chaotic
�1–9�. The working definition of dynamical chaos for infinite
quantum systems indeed refers to RMT �5,8�. As recalled by
Prosen �8�, a many-body quantum system is said to be cha-
otic if its excitation spectrum or some other dynamical char-
acteristics are well described by those of ensembles of Her-
mitian random matrices of appropriate symmetries on certain
energy or time scales. The level fluctuations of a time-
reversal symmetric quantum system were, for instance,
shown to coincide with those of the GOE for systems whose
classical limit is chaotic �3�. The converse is, however, not
necessarily always true as, for instance, the classical coun-
terparts of quantum systems showing GOE fluctuations may
be regular �10�. Quantum chaos, RMT, and statistical me-
chanics were brought together in particular for the special
case of ideal gases �9�.

The local spectral fluctuations of properly rescaled and
processed eigenvalues of random matrix ensembles define
universality classes in the limit of large matrix sizes which
depend on the matrix symmetries and are independent on the
details of the probability distributions of matrix elements.
Such universality classes are for instance associated with the
three fundamental Gaussian ensembles where N�N matrices
are real symmetric for the GOE, Hermitian for the Gaussian
unitary ensemble �GUE�, and quaternion self-dual for the
Gaussian symplectic ensemble �GSE�. A fourth ensemble,
the GDE, is made from matrices whose sole nonzero ele-
ments are diagonal with identical and independent normal
distributions. Eigenvalues of Gaussian ensembles are re-
called to be the equilibrium positions, at a temperature 1/�,
of N identical point charges on a line in 2D which interact
via a logarithmic Coulomb potential and are confined by an
external harmonic potential �1�.

An ubiquitous characteristic of short-range correlations is
the asymptotic distribution of the spacing s between con-

secutive energy levels of quantum systems or between suc-
cessive eigenvalues of random matrices, once unfolded
�1,2,5,11�. The Gaussian ensembles define, for instance,
three universality classes of level repulsion at small s, s
→0, pW,��s��s� with �=1,2 ,4 for the GOE, GUE, and
GSE, respectively. The latter results are not only valid for
Hermitian ensembles. Ensembles of 2�2 pseudo-Hermitian
random matrices, which possess real eigenvalues, with linear
or quadratic level-spacing repulsions were indeed con-
structed by Ahmed and Jain �12�. The fluctuation properties
are expected to be valid for pseudounitarily invariant N�N
matrices from a line of reasoning of the Wigner surmise type
�12�.

A different statistic, closely related to the level density
fluctuation, was considered in a series of papers �11,13–25�.
The fluctuation of the nth excited state �n is defined as

�n = �
i=1

n

�si − 1� = �n+1 − �1 − n , �1�

where the spacing between two successive unfolded levels �i
and �i+1 is si=�i+1−�i. Some fluctuation characteristics of �n
were investigated earlier by Brody et al. �Eq. �5.5� of Ref.
�11��. Relaño et al. �18� calculated correlation functions of �n
for the GOE and the GUE. We studied similar correlations
for the �-Hermite ensemble. The results are described in a
related paper �in preparation�. The fluctuation �n was re-
cently considered as a time series of size M where n plays
the role of a discrete time �14–25�. The associated power
spectra were shown to display a 1/ f� power law behavior,
where f = 2�k

M �k=1, . . . ,M� is the frequency, with an expo-
nent � of 2 for the GDE and of 1 for the GOE, GUE, and
GSE. Faleiro et al. �15� showed that the energy spectra of
chaotic quantum systems are characterized by 1/ f noise from
random matrix theory with a power spectrum S�k� varying as
N /�k for chaotic systems and as N2 /k2 for integrable sys-
tems when the matrix size N is large and k�N. The 1/ f
behavior was shown to be robust.

Ensembles of tridiagonal random matrices with one con-
trol parameter were used to model chaotic quantum systems
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owing to their simplicity and their efficiency in numerical
simulations. In that way, the level-spacing statistics of a
given model can be changed from GOE-like to Poisson-like
�19,26�. The �-Hermite ensemble ��-HE� �27,28�, whose
fluctuations characteristics were recently studied �27–30�, is
a family of real-symmetric tridiagonal matrices whose pa-
rameter � can be chosen at will. The multivariate eigenvalue
distribution of the latter ensemble is identical with those of
the corresponding Gaussian ensembles for �=0,1 ,2 ,4 re-

spectively �27� �Eq. �4� of Ref. �30��. All its spectral charac-
teristics might thus be compared to those of ensembles inter-
polating between the classical Gaussian ensembles. The
present paper investigates the 1/ f� noise in the spectral fluc-
tuations of the random matrices from the �-Hermite en-
semble as a function of �. Additional spectral properties, in
particular at low temperature, can be found in Refs. �27–32�.

A tridiagonal N�N random matrix from the �-HE is de-
fined as

AN,� = �HN,� = 	�
H11 H12/�2 0 . 0

H12/�2 H22 H23/�2 0 .

0 H23/�2 . . 0

. 0 . HN−1,N−1 HN−1,N/�2

0 . 0 HN−1,N/�2 HNN

	 , �2�

where 	 is a scale factor. The 2N−1 distinct matrix elements
are independent random variables. The N diagonal elements,
are independently distributed standard normal random vari-
ables with a zero mean and a standard deviation of 1. The
off-diagonal element Hk,k+1 �k=1, . . . ,N−1� has a chi distri-
bution with k� degrees of freedom whose probability density
is qN,��x�=21−k�/2xk�−1 exp�−x2 /2� /
�k� /2��x�0�.

We performed Monte Carlo calculations of random matri-
ces from the �-Hermite ensemble both in FORTRAN and MAT-
LAB with standard laptop computers as described in Ref.
�30�. The scale parameter �Eq. �2�� was chosen so that 
�2�
=1/4. In that way, the asymptotic eigenvalue distribution for
�
0 is a Wigner semicircle of radius 1. The eigenvalue
density is, to an excellent approximation, a Wigner semi-
circle even for moderate values of N �some tens� when �
ranges between �1 and �5 while deviations occur both for
low and for high values of � �30�. The density at high tem-
perature �small values of �� evolves from a smooth shape
intermediate between that of a Gaussian and that of a Wigner
semicircle to a Wigner semicircle when the matrix size in-
creases �Figs. 1 and 2 of Ref. �30��. At low temperature, the
progressive freezing of charges around their equilibrium po-
sitions produces oscillations of the eigenvalue density around
the smooth Wigner semicircle �28,30,32�.

Any eigenvalue �k of a N�N �-Hermite matrix, which
belongs to the interval �−r , +r�, with typical values of
r��1� ranging between 0.8 and 0.9, is transformed into an
unfolded eigenvalue �k

�u�=�−�
�k ��x�dx from the smoothed

level density ��x�. The unfolded eigenvalues are further res-
caled so that the average spacing between nearest neighbors
is 
s�=1. When the empirical cumulative distribution shows
significant deviations, mostly global for ��1 �30�, from a
Wigner semicircle, the unfolding process was performed
from a smooth eigenvalue density obtained numerically as
the average of an ensemble of spectra simulated with Matlab.
The simulated distributions and the “time series” investi-

gated in the present paper were obtained altogether from
simulations of 106 matrices with N=25, of 105 matrices with
N=200, and of 2 .103 matrices with N=513, 1000 matrices
with N=2049, 500 matrices with N=4097, 500 matrices with
N=8193, and 50 matrices with N=32769.

As the wavelet transform constitutes an efficient method
to obtain the exponent � for the �n statistic �24�, we chose it
to follow ���� as a function of matrix size. As signal pro-
cessing methods based on wavelets are now widespread, we
refer the reader to classical books �33� and we only briefly
sketch the method we used �34–38�. A wide-sense stationary
time series X�t� can be formally written as �34,35�

X�t� � �
j,k=−�

+�

dX�j,k�� j,k�t� , �3�

where the � j,k�t�’s are obtained from a mother wavelet
��t� by dyadic dilations and integer translations � j,k�t�
= 1

2 j/2 �� t

2 j −k�. The mother wavelets considered here have
M��2� zero moments �Rtm��t�dt=0 �m=0, . . . ,M −1�. The
coefficients dX�j ,k� of the discrete wavelet transform
dX�j ,k�= 1

2 j/2 �−�
+�X�t��� t

2 j −k�dt, quantify frequency details of
X at scale j and at location k. When the scale j is large, the
coefficient dX�j ,k� captures low-frequency or coarse-scale
behavior of X�t�. Conversely, the coefficient dX�j ,k� charac-
terizes the high- frequency or fine-scale details of X�t� at
small scales j �36�. If nj is the number of coefficients at scale
j, the variance vX�j� of dX�j ,k�, vX�j�, also denoted as the
mean energy of the wavelet coefficients at scale j, can be
estimated from Ref. �37�:

vX�j� = 
�
k=1

nj

dX�j,k�2�� nj �4�

as the mean of dX�j ,k� is zero by construction. The wavelet
energy spectrum, defined as the set of variances vX�j�, is
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related to the power spectrum of the time series X�t�
�34–38�. The wavelet energy spectrum summarises the spec-
trum information using just one value per frequency band
and is of interest in particular when the power spectrum is
relatively featureless in each band �35�. When the time series
displays 1/ f� noise, then in rather mild conditions �35–38�

vX�j� � const � 2 j+1�
2−�j+1�

2−j df

f� �5�

which gives a linear relationship between log2�vX�j�� and j
with a slope �.

N�N �-Hermite matrices with N=2q+1, with q varying
from 9 to 15, were unfolded to obtain 2q−1 spacings. The
wavelet analysis of the �n series was performed over q−1
scales with a number of coefficients decreasing from 2q−2 for
the finest scale to 1 for the coarser using the WAVELAB soft-
ware �version 850� �39�. The first set of 2q−2 noisy coeffi-
cients and the last coefficient were discarded and the linear
regression described above was performed from the en-
semble average of the second moments of the wavelet coef-
ficients of the q−3 internal scales. Then, as the number of
coefficients at scale j, nj �2−j, is here �2p, p is equal to −j
except for an irrelevant shift independent of j. Linear rela-
tionships are then expected to hold between log2�v��p�� and
p with a slope −� as convincingly shown by Fig. 1. Different

wavelets were used and seen to show the same bevavior of
���� as those found with Daubechies wavelets of different
indices which have compact support in the time domain and
a well-localized support in the frequency domain �33�. Fig-
ure 1 shows first that the �n series is characterized by a 1/ f
noise for any ��1 in agreement with the results found for
the three classical Gaussian ensembles ��=1,2 ,4� �14–25�.
When � decreases from 1 to 0, the noise evolves from 1/ f at
large � to 1 / f2 when � is close to zero. An homogeneous
evolution would exhibit a single intermediate 1 / f� noise
with 1���2 at all scales but Fig. 1�b� shows that it is
heterogeneous with a �1/ f2 noise at the finest scales and a
�1/ f noise at the coarsest ones. The analysis of the transi-
tion was nevertheless performed from the slopes of linear fits
to the various curves. Therefore, a value of � intermediate
between 1 and 2 is a convenient effective value but it does
not necessarily mean that it results from a 1/ f� noise at all
scales. For instance, the slope obtained for �=1/128 and
N=32769 from a linear fit of all points is �=1.50 which is in
that case the average of the slopes fitted from the zones 1
� p�6 and 7� p�12 which are �1=1.19 ��1/ f� and �2

=1.83 ��1/ f2�, respectively. Simulations and wavelet analy-
ses were performed for �=2−m with m=−3 to 13. For clarity,
only some of the obtained results are shown on Fig. 1�b�.
When � decreases in the region where � increases rapidly,
the range of scales in which the �1/ f2 noise predominates
increases for a given N �Fig. 1�b��.

TABLE I. The N dependence of the parameters �m, defined as
���m�=1.5 and 	�, which are obtained by least-squares fitting the
���� curves by Eq. �6� for a given N.

N log10��m� 102�m 	�

513 −1.23 �0.01� 5.90 �0.14� 0.87 �0.02�
2049 −1.52 �0.02� 3.02 �0.14� 0.99 �0.03�
8193 −1.79 �0.04� 1.63 �0.15� 1.01 �0.06�
32 769 −2.07 �0.04� 0.85 �0.08� 1.18 �0.06�

FIG. 1. �Color online� The log2 of the variance �Eq. �4��,
log2�v��p��, as a function of p for different values of � and of N; �
decreases as indicated from bottom to top �a� from �=25 to �
=2−17 �b� from �=1 to �=2−21.

FIG. 2. �Color online� The variation of the exponent �, as a
function of � and N. The four ���� curves were rescaled with the
parameters �m and 	� �Eq. �6�� given in Table I �full squares: N
=513, full triangles: upwards N=2049, downwards N=8193, full
circles: N=32769�.
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The analysis of the effect of the matrix size N on the ����
curves was performed with a Daubechies wavelet of index
10. All the ���� curves are very well described by

���� = 1.5 − 0.5 � erf„log2��/�m�/	�
�2… , �6�

where erf�x� is the usual error function. The least-squares
fitted parameters �m and 	� are given in Table I. Figure 2
shows that the four curves ��ln�� /�m� /	�� indeed merge

together and suggests that a unique growth mechanism of the
�1/ f2 fine-scales operates for any large enough matrix size.
The parameter �m decreases rather slowly with N as �m
�1.1/N0.47 while the apparent small increase 	� may not be
significant. In any case, the curves ���� are shifted down-
wards without becoming steeper when N increases in the
range investigated here. Asymptotically, the 1/ f2 behavior
occurs only at �=0 while it is the 1/ f behavior which is the
rule for �
0.
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